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Abstract

Euclidean geometry has formed the foundation of architecture, science, and technology for mil-
lennia, yet the development of human’s intuitive reasoning about Euclidean geometry is not well
understood. The present study explores the cognitive processes and representations that support the
development of humans’ intuitive reasoning about Euclidean geometry. One-hundred-twenty-five 7- to
12-year-old children and 30 adults completed a localization task in which they visually extrapolated
missing parts of fragmented planar triangles and a reasoning task in which they answered verbal ques-
tions about the general properties of planar triangles. While basic Euclidean principles guided even
young children’s visual extrapolations, only older children and adults reasoned about triangles in ways
that were consistent with Euclidean geometry. Moreover, a relation beteen visual extrapolation and
reasoning appeared only in older children and adults. Reasoning consistent with Euclidean geometry
may thus emerge when children abandon incorrect, axiomatic-based reasoning strategies and come to
reason using mental simulations of visual extrapolations.
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1. Introduction

Our reasoning about everyday physical events, like how forces affect object trajectories,
may be most successful when we consider how such events unfold over time (e.g., Battaglia,
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul, 2013).
For example, when asked what would happen if a ball attached to a string whirling around in
a circle was suddenly released, about ⅓ of adult participants in one classic study incorrectly
thought that the ball would continue on a curved, rather than straight, trajectory (McCloskey,
Caramazza, & Green, 1980, see also Caramazza, McCloskey, & Green, 1981; McCloskey,
1983; Proffitt & Gilden, 1989). But when given animated displays of the whirling ball versus
static displays or linguistic descriptions, participants were more likely to choose the correct,
linear trajectory than the incorrect, curved one (Hegarty, 2004; Kaiser, Proffitt, Whelan, &
Hecht, 1992; Smith, Battaglia, & Vul, 2018).

While successful reasoning about the spatial and geometric properties of such dynamic
physical events may naturally lend itself to mental simulations, what of successful reasoning
about geometry itself, a mathematical cornerstone for physics and much of human achieve-
ment? Do such dynamic simulations play any role in our reasoning about the properties of
static, immutable geometric objects, like planar triangles? Problems in geometry instead seem
best answered by immediate inference (like Bhāskara’s seeing-is-knowing “Behold” proof
of the Pythagorean theorem) or by step-by-step proof rooted in axiomatic deduction (like
Euclid’s Elements 1.47 for the same theorem). But without Bhāskara’s brilliance or Euclid’s
elements, what describes our intuitive reasoning about triangles?

Much prior work has addressed the role of visual imagery and visual routines for judgments
about physical spatial entities (e.g., Mitrani & Yakimoff, 1983; Shepard & Metzler, 1971; Ull-
man, 1984; Weintraub & Virsu, 1972). Nevertheless, it remains unknown whether such visual
and mental processes might also support our more general reasoning about abstract spatial
entities, like those that underlie formal geometry. Evaluating this link is important not only
for our understanding of geometry as a central cognitive achievement of the human mind but
also for our development of effective geometry pedagogies, which traditionally communicate
geometric abstractions through language, proofs, or static diagrams (Calero, Shalom, Spelke,
& Sigman, 2019; Carraher, Schliemann, & Carraher, 1988; Duval, 2006; González & Herbst,
2013; Herbst & Brach, 2006; Zaslavsky, 2010; Zodik & Zaslavsky, 2007).

Recent work by Hart et al. (2018) has begun to address the possibility that dynamic mental
simulations described by particular spatial properties might indeed support mature geometric
intuitions used during reasoning about Euclidean objects, like planar triangles. In this study,
adult participants tested in the laboratory and on Amazon Mechanical Turk were presented
with a series of fragmented planar triangles varying greatly in size and were asked to use a
mouse to drag a dot to the missing vertex of the triangles. Participants produced vertex loca-
tions that both underestimated the true locations and were strikingly more accurate than those
that would be produced if they had attempted one instantaneous, straight-line extrapolation
from each of the given two corners with a noisy representation of the angle sizes (Mitrani
& Yakimoff, 1983). Hart et al. (2018) thus modeled participants’ localizations using a corre-
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lated random walk composed of two competing processes: one that maintained local, smooth
motion; and another that globally corrected this motion’s direction by the given angle sizes.
Participants’ localization accuracy was overall scale-dependent (error grew as triangles grew)
because of the local noise associated with the random walk. Nevertheless, the global correc-
tion process inherently persevered the basic Euclidean principle of scale-invariant angle rep-
resentations because extrapolations were corrected at a constant timescale as they unfolded.
This model was able to account both for participants’ underestimation of a triangle’s missing
vertex and for the striking accuracy of their localizations.

Hart et al. (2018) also evaluated the relation between this model of participants’ localiza-
tions and their reasoning about the general properties of triangles. A different group of adult
participants on Amazon Mechanical Turk produced verbal judgments about the position and
angle size of a triangle’s missing corner after reading verbal descriptions of changes to the
other two corners (e.g., “What happens to the angle size of the third corner of a triangle when
the other two angles get smaller? Does the third corner angle size get bigger, get smaller,
or stay the same size?”). Participants responded more accurately and more quickly when the
described transformation resulted in a smaller versus larger triangle, suggesting that they were
relying on a reasoning process that, like their localizations, was scale-dependent and tied to
particular physical exemplars. Moreover, the model of the first group of participants’ local-
izations predicted the categorical responses of the second group. Hart et al. (2018) speculated
that adults might actively engage in mental simulation of these visual extrapolations to answer
verbal reasoning questions about static geometric figures.

This work highlights, but does not directly address, several persistent questions about
human geometric reasoning, including how formal education and individual development
might affect the intuitive strategies humans adopt during geometric reasoning. Prior cross-
cultural research testing children and adults from the United States, France, and a remote
Amazonian village (Izard, Pica, Spelke, & Dehaene, 2011) and prior developmental research
from a laboratory in the United States (Dillon & Spelke, 2018) had used tasks nearly identical
to Hart et al. (2018) and found significant changes in geometric reasoning through develop-
ment. Reasoning consistent with Euclidean geometry emerged universally across human cul-
tures, regardless of formal schooling (Izard et al., 2011) at about 10–12 years of age (Dillon
& Spelke, 2018; Izard et al., 2011). While these cross-cultural and laboratory-based studies
suggest universal developmental changes in geometric reasoning, they nevertheless provide
no evidence of what cognitive processes, representations, or intuitive strategies might underlie
those developmental changes. In particular, they do not reveal whether the spatial properties
inherent in simple acts of visual triangle completion might be related to explicit judgments
about the Euclidean properties of shapes. In the present work, we thus combine computa-
tional methods from statistical physics and developmental methods from basic research in
cognitive science to examine the relations between visual triangle completion and verbal rea-
soning about the general properties of planar triangles across samples of children and adults.
We speculate that reasoning consistent with Euclidean geometry may emerge in development
when children abandon incorrect, axiomatic-based strategies and instead come to reason by
an intuitive strategy rooted in mental simulations of visual extrapolations.
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2. Methods

2.1. Child participants

The use of human participants for this study was approved by the Institutional Review
Board on the Use of Human Subjects at New York University. A sample size of 125 flu-
ent English-speaking children between the ages of 7 and 12 years was chosen in advance
of data collection and was preregistered on the Open Science Framework (OSF). All par-
ticipants were recruited from visitors to the National Museum of Mathematics in New York
City. While the museum welcomes visitors of all ages, their target child age range is 8–
11 years. Most museum visitors reside in New York City or the surrounding suburbs. Most
visitors are White, although household incomes vary widely. Museum visitors also likely
have a strong interest in mathematics. Despite these specifications of our sample, the tasks
in the present study have––rather uniquely––been used in previous studies with diverse pop-
ulations, as reviewed above, and their results have been unaffected by education or culture.
We thus consider the present sample’s responses too as representative of the larger popu-
lation at least in terms of the specific cognitive geometry probed here and in those prior
studies.

Several unexpected outcomes related to the sample occurred during data collection. First,
we had planned that each whole-year age group would include at least 20 children, but 125
participating children met the inclusion criteria before we could reach 20 children per age
group (7 years: 19 children; 8 years: 17 children; 9 years: 28 children; 10 years: 30 children;
11 years: 19 children; and 12 years: 12 children). Second, we had planned to include an
additional group of 25 6-year-old children apart from the main group of 125 older children.
However, their exclusion rate was very high (12 out of the first 25 children tested, 2 for
missing data and 10 for response properties in the localization task), and so we discontinued
data collection with these younger children. In our main sample of 7- to 12-year-old children,
an additional 61 children participated but were excluded for: missing data (6); technical failure
(1); experimenter error (1); parental interference (1); and the properties of their responses in
the localization task (52; see Supplementary Material; Fig. S1). This last criterion, which led
to a greater number of excluded children than we had expected, was specified in advance and
based on Hart et al. (2018), who tested adults individually in the laboratory and presented
three times the number of trials compared to the present task. This criterion thus turned out
to have been too strict for the present study (see Supplementary Material), not accounting
for the age differences between studies, the more complex testing conditions in the museum
compared to the laboratory, and the significantly reduced number of trials. To examine the
robustness of our findings to this exclusion criterion, we repeated our main analyses as an
unplanned analyses with the excluded sample (N = 52; 21 girls; 7 years: 17 children; 8 years:
9 children; 9 years: 10 children; 10 years: 6 children; 11 years: 6 children; and 12 years: 4
children), and because those results are consistent with the analysis of the planned sample,
we report them in the Supplementary Material.
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Fig 1. (a) Sample screen, reasoning task. The question at the top reads: “Take this partial triangle here. What
if I increase the distance between the bottom two corners, will the angle size of the top corner get bigger, get
smaller, or stay the same size?” Participants were provided with a set of scalene triangle corners and asked to make
judgments about the third, missing corner after changes to the given corners. (b) Sample screen, localization task.
The question at the top reads: “Can you click where the top corner is?” Participants were provided with a set of
isosceles triangle corners and asked to drag a dot to the vertex of the missing corner.

2.2. Adult participants

Based on the findings with children presented below, we also tested an unplanned group of
30 adult participants (the maximum number of participants per age group in the child sample)
between the ages of 21 and 36 years. This allowed us to examine whether the unexpected
trends we observed in older children described below were also present in adults. An addi-
tional 7 adults also participated but were excluded because of the properties of their responses
in the localization task (see Supplementary Material); no adults met any of our other exclu-
sion criteria. Adult participants were also recruited from visitors to the National Museum of
Mathematics and completed the same tasks as children, presented exactly in the same way.
None of the adults were participating children’s parents or guardians.

2.3. Reasoning task

The task materials and procedures were determined in advance and preregistered on the
OSF. Participants first completed a geometric reasoning task (after Dillon & Spelke, 2018;
Hart et al., 2018) that required them to produce verbal, categorical responses about the dis-
tance and angle properties of triangles given shape and size transformations to fragmented
scalene triangles with only two visible corners (Fig. 1a). This task was presented on a large
screen (65’’ diagonal, 1920px × 1006px) and with the help of an adult experimenter. At the
beginning of the task, participants saw a sample fragmented triangle (which never appeared
during a test trial), displaying at first just the triangle’s two base corners, then the complete tri-
angle, then just the two base corners again. The experimenter then demonstrated what four dif-
ferent possible changes to those visible corners would look like, using a separate display with
one button for each of the four possible changes: the visible angles growing in size; shrink-
ing in size; moving apart; or moving together. The sample fragmented triangle had 30° base
angles, and its base length was set to 0.7 of the full possible base length (Table 1). Although
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Table 1
Properties of the triangle fragments presented in the reasoning task

Triangle Base length Right base angle Left base angle Triangle size [area]

1 0.44 48° 32° 3.87
2 0.66 32° 40° 7.8
3 0.77 32° 56° 13.03
4 0.55 40° 32° 5.41
5 0.77 56° 48° 18.82
6 0.66 40° 48° 10.41
7 0.44 56° 40° 5.19
8 0.55 48° 56° 9.6

Note. (1 length unit = 1632 px [1920px × 0.85]).

participants were tested only on static fragmented triangles, they could revisit the sample-
changes display at any point during the task if they wanted to see those sample changes again.
Participants were then told that for each fragmented triangle, they could be asked: whether
the triangle’s missing corner position would “move up,” “move down,” or “stay in the same
place” after one of these changes; or whether its angle size would “get bigger,” “get smaller,”
or “stay the same size” after one of these changes. To ensure that participants understood what
each of these outcomes meant, the experimenter gestured as they described each one. For the
position outcomes, the experimenter held one hand at chin height, then moved it up in space,
then down in space (below chin height), and then back to chin height. For the angle-size
outcomes, the experimenter formed an upside-down “V” shape with their hands, then made
the “V” wider, then narrower (narrower than its starting width), and then back to its starting
width. In addition to providing these gestures during the task’s introduction, the experimenter
also displayed them during every test question. There were eight possible questions (4 pos-
sible changes to the visible corners × 2 possible outcomes for the missing corner), and each
question was presented twice, once per block of eight questions with two total blocks for each
participant. Those eight questions were randomized within a block and paired with a random
fragmented scalene triangle (Table 1). The second block presented the same questions but in a
different order and with a different random triangle. Participants never saw the same question
or triangle presented twice in a row. All images accompanying test questions were created by
a custom Javascript code. Participants’ responses were recorded by an experimenter’s button
press, and participants received no feedback.

2.4. Localization task

The task materials and procedures were determined in advance and preregistered on the
OSF. Participants completed the localization task (after Hart et al., 2018; Izard et al., 2011)
following the reasoning task. At the beginning of the task, participants again saw the sample
fragmented triangle, displaying at first just the triangle’s two base corners, then the complete
triangle, then just the two base corners again. Participants were told that they would see
more partial triangles and would be asked to use the mouse to click on the vertex location
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Table 2
Properties of the triangle fragments presented in the localization task

Triangle Base length Base angles Triangle size [area]

1 0.9 36° 14.7
2 0.4 36° 2.9
3 0.1 36° 0.18
4 0.04 36° 0.03
5 0.4 45° 4.0
6 0.1 45° 0.25
7 0.04 45° 0.04

Note. (1 length unit = 1632 px [1920px × 0.85]).

of the triangle’s missing top corner. To ensure that participants understood the task, they
completed one practice trial with this sample triangle. For the test trials, participants saw 49
fragmented triangles (Fig. 1b) and were asked to click on the location of a triangle’s missing
vertex. They received no feedback. Seven isosceles triangles were presented, which had seven
different side-length values combined with two angle sizes and four base lengths (Table 2).
The presentation of these triangles was pseudo-random for each participant, not allowing the
same triangle to be presented twice in a row. All participants used a single-button, child-sized
mouse, and their responses were recorded based on where they clicked on the screen; reaction
times were also recorded. All images accompanying test questions were created by a custom
Javascript code.

3. Results

3.1. Child results

3.1.1. Planned analyses
The following analyses were specified prior to data collection and preregistered on the OSF.

Reasoning task First, a binomial mixed-model logistic regression revealed a significant
effect of gender on children’s overall accuracy, with boys performing better than girls (P =
0.579, 95% CI = [0.501, 0.653], p =.048). As planned, all analyses were thus repeated with
gender as an additional predictor variable, but because those results were consistent with our
primary planned analyses, they are reported in the Supplementary Material.

A binomial mixed-model logistic regression evaluated the role on children’s accuracy
of: question type (about the position versus angle size of the missing corner); transforma-
tion (to the distance between the two given corners or their angle sizes); size of the trans-
formation (whether the two given corners were described as getting farther/bigger versus
closer/smaller); the two-way interactions between these variables; the implied area of the
fragmented triangle; and age. As predicted, this regression revealed results consistent with
prior studies (Dillon & Spelke, 2018; Fig. 2). In particular, children were more accurate on
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Fig 2. The percentage of (a) younger (<10 years) and (b) older (≥10 years) children’s responding in the reasoning
task about the general properties of triangles. Children were asked to reason about changes to the position and
angle size of the missing corner of incomplete triangles after changes to the angle sizes or distances between the
two given corners (see Fig. 1).

questions about the position versus angle size of the fragmented triangle’s missing corner (P
= 0.746, 95% CI = [0.672, 0.808], p <.001) and when there was a transformation to the
angle sizes versus the distance between the two given corners (P = 0.716, 95% CI = [0.637,
0.783], p <.001). Children were also more accurate when they were asked about the position
versus angle size of the missing corner after a distance transformation to the two given corners
(P = 0.692, 95% CI = [0.597, 0.772], p <.001). Neither the size of the transformation nor
the implied area of the fragmented triangle presented with each question affected children’s
accuracy (ps >.490). Finally, older children were more accurate on this task than younger
children (age, in days, was treated as a continuous variable in this analysis; P = 0.538, 95%
CI = [0.507, 0.568], p =.016).

Localization task For each child and each of the seven triangle side lengths, we calcu-
lated the localization error in the y direction (the true vertex location minus the mean of
the child’s estimates) and the standard deviation in the y direction of the child’s estimates.
Using a linear regression, we first evaluated the growth in each child’s error with growing
triangle side lengths. We then evaluated, across the sample of children, the relation between
error growth by side length and age using a linear regression. As predicted, across the sam-
ple of children, error grew significantly as triangle side-length grew (p <.001), suggesting an
overall scale dependence in children’s visual extrapolations of the triangles’ missing parts.
Moreover, as predicted, we found that the error grew less in older versus younger children
(p =.039).

After Hart et al. (2018), we then evaluated the slope of the log of the standard deviation
of each child’s localization estimates as a function of the log of triangle side length. This
slope, or scaling exponent, is equivalent to the power law by which the standard deviation of
the estimates scales with triangle side length. The scaling exponent represents one of the two
competing processes in the correlated-random-walk model described above, which character-
izes the extrapolation process. It represents the global correction of the local noise associated
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Fig 3. Example responses from an 8-year-old child on the localization task on (a) a smaller triangle with 0.4 times
the longest base length and 45° angles and (b) a larger triangle with 0.9 times the longest base length and 36°
angles.

with maintaining smooth motion in the direction of the given angle sizes.

d2θ/dt2 = 1/τ (1/ξ (θ − θ0) − dθ/dt) + η(t ) (1)

dx/dt = vp cos (θ ) (2)

dy/dt = vp sin (θ ) (3)

The model parameters include τ , an inertial relaxation timescale for local smoothness,
vp , a characteristic speed of the extrapolation progress, ξ , a timescale for the global error
correction, and η(t), a noise term. The more correction events that occur, the closer the scaling
exponent is to 0.5 versus 1. Extrapolations with scaling exponents close to 0.5 thus better
preserve the angle sizes of the triangle’s given corners, allowing greater consistency with
Euclidean geometry.

We predicted that our data would be well described by this model, yielding localization
errors that underestimated the true vertex location and scaling exponents that were less than
1. We also predicted that since older children more consistently reason in line with Euclidean
geometry (as revealed by prior work), their localizations would also better reflect Euclidean
geometry, resulting in smaller scaling exponents.

Consistent with the model from Hart et al. (2018), children tended to underestimate the
location of a fragmented triangle’s missing vertex (Fig. 3 and Fig. S2) and most of their scal-
ing exponents were less than 1: Children produced a median scaling exponent of 0.83 (95%
CI = [0.80, 0.86], range = [0.56, 1.14]). Contrary to our prediction, however, the relation
between scaling exponent and age was not significant (p =.666): We did not find evidence
that older children corrected their visual extrapolations more than younger children.

Relation between reasoning and simulation Children’s accuracy on the reasoning task
and localization task may nevertheless rely on properties inherent to Euclidean geometry. We
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thus hypothesized that individual children’s scaling exponents would be related to their indi-
vidual reasoning success such that the more frequently a child corrected their visual extrapo-
lations in the localization task, the greater their accuracy in the reasoning task. This relation 
would be especially evident in older children, moreover, who may more often adopt a strategy 
of mentally simulating visual extrapolations during reasoning.

First, a binomial mixed-model logistic regression across the entire sample of children prob-
ing the relation between scaling exponent and reasoning accuracy was not significant (P = 
0.271, 95% CI = [0.097, 0.562], p =.117). Nevertheless, this first analysis did not take into 
account the difference in reasoning accuracy for older versus younger children. An additional 
binomial mixed-model logistic regression predicting accuracy by scaling exponent, age, and 
their interaction did not provide evidence that age moderated the relation between scaling 
exponent and reasoning (Scaling Exponent: P = 0.995, 95% CI = [0.038, 1], p =.226; Age: 
P = 0.660, 95% CI = [0.486, 0.800], p =.071; Scaling Exponent *Age: P = 0.344, 95% 
CI = [0.182, 0.554], p =.142).

3.1.2. Unplanned analyses
Relation between reasoning and simulation To better understand the relation between 

reasoning and simulation and the differences between younger and older children beyond 
what we could infer from the two planned analyses, we conducted two additional unplanned 
analyses. First, we repeated the same regressions as in the planned analysis, but this time 
treated children below 10 years of age (N = 64) and above 10 years of age (N = 61) as dif-
ferent groups. This decision was motivated by prior results from the literature on children’s 
and adults’ geometric reasoning across cultures: Prior studies had indicated 10 years of age 
as approximately the age at which reasoning becomes conformal with Euclidean geometry 
(Dillon & Spelke, 2018; Izard et al., 2011). This age split, as opposed to the continuous treat-
ment of age in our moderation analysis, may better capture the developmental changes in 
children’s reasoning, especially if there is not much change in reasoning before age 10 years 
and not much change in reasoning after age 10 years. In addition to splitting the sample based 
on the results and conclusions of prior work, we also conducted a change-point analysis on 
children’s accuracy on our reasoning task, with age binned by month and using a binary 
segmentation method (Scott & Knott, 1974) with a Bayesian information criterion (BIC) 
penalty type. We found one change point at 10 years 3 months (Fig. S3). As a test of robust-
ness, we thus repeated our unplanned analysis using this age split, and because it revealed 
results consistent with the split at 10 years, we report those results in the Supplementary 
Material.

First, a binomial mixed-model logistic regression predicting reasoning accuracy by scaling 
exponent, age (≥10 versus <10 years), and their interaction found no significant effect of scal-
ing exponent (P = 0.492, 95% CI = [0.176, 0.814], p = .966) but a significant effect of age 
(P = 0.920, 95% CI = [0.613, 0.988], p = .016). This analysis was further characterized 
by a scaling exponent by age interaction (P = 0.093, 95% CI = [0.010, 0.522], p = .059). 
Individual contrasts revealed no relation between scaling exponent and reasoning for younger 
children (P = 0.492, 95% CI = [0.176, 0.815], p = .966), but a significant relation between
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scaling exponent and reasoning for older children (P = 0.090, 95% CI = [0.016, 0.381], p
=.013; Fig. 4).

We next explored whether this result was due to differences in effort or motivation in
younger versus older children. In particular, if the hardest working or most motivated children
were older, corrected their localizations more, and thought more deeply during reasoning, this
might lead to both better scaling exponents and more accurate reasoning. If we correct for the
time older children took to complete the localization task (as a proxy for their effort; reaction
time, in seconds, was log-transformed to better align the scales of the other variables, allowing
for model convergence) and evaluate the relation between scaling exponent and reasoning, we
find that the relation persists (P = 0.080, 95% CI = [0.009, 0.448], p =.032) and that time
does not independently predict reasoning (P = 0.428, 95% CI = [0.258, 0.617], p =.495).
The relation between scaling exponent and reasoning in older children is thus not likely due
to overall effort or motivation.

Finally, a close investigation of children’s responses lent further support to the sugges-
tion that common Euclidean principles drive both visual extrapolation and geometric rea-
soning in older but not younger children. First, older children tended to produce reasoning
responses that, like the extrapolation process, showed some scale dependence, for example,
responding more accurately when the transformed triangle was smaller versus larger than
the original (Fig. 2). Younger children, in contrast, tended to produce reasoning responses
that directly conflicted with the properties of extrapolation. The majority of younger, but
not older, children reasoned, for example, that the missing third angle of a triangle would
change in the same direction as (as opposed to inversely to) the change to the other two
angles (Fig. 2). Even a very noisy extrapolation of such an angle transformation would be
unlikely to yield this response in a majority of children. Thus, older children’s reasoning

Fig 4. The relation between the scaling exponent from the localization task and accuracy in the reasoning task
across older (≥10 years, dark gray) and younger (<10 years, light gray) children, 95% CIs are depicted for each
regression line.
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Fig 5. The percentage of adults’ responding in the reasoning task about the general properties of triangles.

errors were—and younger children’s errors were not—consistent with the properties of visual
extrapolation.

3.2. Adult results

3.2.1. Unplanned analyses
After seeing these results with children, we collected an additional unplanned, small sample

of adult participants. This adult sample allowed us to further evaluate two of our surprising
findings with children, namely that children’s scaling exponents from the localization task,
which inherently reflect the Euclidean principle of scale-invariant angle measures: (1) do not
improve with age; and (2) are associated with reasoning only at older ages, that is, when
reasoning is conformal with Euclidean geometry.

First, consistent with the findings from the child sample, a linear regression revealed no
evidence of an effect of age on the scaling exponent across the entire child and adult sample (P
= 0.500, 95% CI = [0.500, 0.501], p =.303). To further evaluate this null effect, we conducted
a Bayesian regression, which calculated the posterior distribution of slopes characterizing the
relation with a region of practical equivalence of –0.005 to 0.005. This analysis suggested
that there was no effect of age on the scaling exponent (slope = 0.0015, 95% CI = [–0.0014,
0.0044], posterior probability of the null effect of age = 99.14%).

Second, consistent with the findings with older children, adults’ performance on the rea-
soning task was conformal with Euclidean geometry (Fig. 5). For adults, as for older children,
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moreover, individuals’ scaling exponents were related to their reasoning success (P = 0.017,
95% CI = [0.000, 0.620], p = .080).

4. Discussion

Two tasks required children and adults to make judgments about the properties of visually
fragmented triangles. The patterns of performance on these tasks suggested both continu-
ity and change in geometric cognition through development. First, a correlated-random-walk
model from statistical physics characterized children’s localizations of the missing third cor-
ners of triangles of different sizes, as it had in prior studies examining adults’ localizations.
The model revealed that while the random noise associated with triangle-side extrapolation
decreased as children got older, the timescale with which they corrected that noise in line with
the basic Euclidean principle of scale-independent angle-size information did not change.
And so, children may require no explicit knowledge of this Euclidean principle (or its rel-
evance to a visual shape completion task) when extrapolating the missing parts of planar
shapes. Instead, basic Euclidean principles guiding visual extrapolation may be present from
early in human development, perhaps due to experiences with the continuous edges and sur-
faces in scenes and objects or to the very structure of our brain systems dedicated to everyday
spatial tasks (Ayzenberg & Lourenco, 2019; Elder & Goldberg, 2002; Feldman, 2001; Field,
Hayes, & Hess, 1993; Lee & Yuille, 2006; Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011).
Moreover, sensitivities to straight and oriented trajectories for moving through spaces and rec-
ognizing objects are observable in infancy and young childhood, even in the absence of typ-
ical visual experience (Kellman & Spelke, 1983; Landau, Gleitman, & Spelke, 1981; Slater,
Mattock, Brown, & Bremner, 1991), and the tradeoff between maintaining a straight line at a
certain angle and maintaining a smooth line with no sharp corrections is even inherent in the
navigational abilities of a variety of animal species (Cheung, Zhang, Stricker, & Srinivasan,
2007), including dung beetles (Peleg & Mahadevan, 2016), birds (Wiltschko & Wiltschko,
2005), sharks (Papastamatiou et al., 2011), and insects (Wehner, Michel, & Antonsen, 1996).
Future research exploring whether other animal species incorporate basic Euclidean princi-
ples into their visual extrapolations, moreover, could evaluate whether such principles are
reflective of our uniquely human capacity to learn geometry, our experiences in the spatial
world shared by other animals (e.g., Hubel & Wiesel, 1962, 1965; Rubin, Nakayama, & Shap-
ley, 1996; von der Heydt, Peterhans, & Baumgartner, 1984), or any evolutionarily inherited
Euclidean biases in our perception and cognition.

Second, the present study found that children’s verbal reasoning about the general prop-
erties of triangles changed markedly as children got older, consistent with prior studies with
diverse populations (Dillon & Spelke, 2018; Izard et al., 2011). In particular, younger children
seemed to respond to reasoning questions by simple, though erroneous size-based heuris-
tics that conflicted with Euclidean principles. For example, younger children responded that
the missing angle of a fragmented triangle changed in the same direction as (as opposed
to inversely to) the change to the other two angles. In contrast, older children and adults
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tended to respond to questions about the side and angle properties of planar triangles in gen-
eral accord with formal, Euclidean geometry. Nevertheless, neither older children nor adults
were perfectly Euclidean: Both groups showed some scale dependence in their reasoning,
for example, by responding more accurately when the described transformations to the trian-
gles made triangles smaller versus bigger. This was true even though the participants in the
present study, who were visitors to a museum dedicated to math, may have more interest and
practice in math compared to others who have been tested in prior studies and others in the
general population. Their similar performance to other populations thus further supports the
suggestion that some intuitive reasoning about geometry may be largely unaffected by cul-
ture, education, or even expertise (see, e.g., Amalric & Dehaene, 2016; 2018; Butterworth,
2006).

The present work also addresses two questions about the cognitive mechanisms underlying
human geometric reasoning that prior work had not been able to address: What developmental
change in cognitive representations and processes might underlie a change in reasoning from
incorrect and axiomatic to nearly Euclidean? And what would it mean for our understand-
ing of intuitive geometry to qualify this reasoning as nearly Euclidean? While prior work
had speculated that older children naturally become “little Euclids,” reasoning by intuitive
knowledge of Euclidean rules (e.g., Izard et al., 2011), the present work instead suggests that
older children and adults fall short of reasoning that is perfectly consistent with Euclidean
geometry. Instead, older children and adults appear to engage only some Euclidean principles
during simple tasks of visual triangle completion and during verbal tasks of explicit geometric
reasoning. We suggest, therefore, that older children and adults may perform better on tasks
of Euclidean reasoning not because they become “little Euclids,” but because they adopt an
intuitive reasoning strategy that relies on the mental simulations of their visual extrapolations,
which include some Euclidean elements. Developmental discontinuity in Euclidean reasoning
may thus emerge when children abandon axiomatic strategies and begin to engage in dynamic
simulations to solve novel geometric reasoning problems. For older children and adults, more-
over, the strength of the Euclidean elements guiding these simulations may contribute to their
individual success in reasoning in accord with Euclidean geometry.

Given the correlational design of the present study as well as some unplanned analyses,
this suggestion is speculative. Nevertheless, the present work raises new questions for future
exploration. For example, if simulation is a relatively effective intuitive strategy for geomet-
ric reasoning that older children and adults rely on, and younger children’s extrapolations
already incorporate basic Euclidean properties that are later predictive of reasoning success,
then why do younger children not engage in simulation during reasoning? One possibility
is that younger children do not recognize the relevance of their simulations to the reasoning
problem. Simply telling a younger child to dynamically imagine the missing parts of and the
transformations to fragmented triangles during a reasoning task might thus make their per-
formance look more like older children’s. Instruction to imagine the dynamic unfolding of
physical events has improved, for example, even young children’s reasoning about the tra-
jectories of balls moving through opaque tubes (e.g., Joh, Jaswal, & Keen, 2011; Palmquist,
Keen, & Jaswal, 2018). Future studies using such explicit verbal instruction or implicit prim-
ing could begin to evaluate both whether mental simulation of visual extrapolations about
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geometry and its static planar figures is available to younger children as a reasoning strategy
and whether such simulation is causally related to reasoning success.

Another possibility for why younger children may not engage in simulation during reason-
ing is that limits to younger children’s memory and attention, in general, or other properties
of their simulations, in particular, may affect their ability to engage in it as a reasoning strat-
egy. For example, while there were many similarities between older and young children’s
visual extrapolations in the localization task, engaging in mental simulation of these visual
extrapolations for reasoning requires both visualizing a transformation to a given triangle
and performing extrapolations on that imagined triangle. Our current tasks do not examine
whether younger and older children might differ in such abilities. Moreover, younger chil-
dren had more local noise in their simulations than older children. Future studies might begin
to explore whether introducing noise into the displays accompanying reasoning questions
for older children and adults might lead them to adopt axiomatic-based heuristics instead
of simulation-based strategies for solving reasoning problems (see Perfecto, Donnelly, &
Critcher, 2019). Such studies could lead to the investigation of how individuals decide, more
generally, whether reasoning by heuristics or simulation might be more or less effective when
faced with novel problems in geometry, math, or other domains. Moreover, such findings
could ultimately inform pedagogies aimed at teaching and testing geometric formalisms,
rules, and abstractions.

While problems in geometry may seem best answerable by immediate inference or deduc-
tive proof, intuitive geometric reasoning may instead rely on noisy, dynamic simulations. The
achievements enabled by Euclidean geometry are manifest throughout human history, and
Euclidean geometry has often been held up as the model of abstract thought. And yet our
findings suggest that Euclid himself, like the rest of us, may have taken quick random walks
in his mind before he plodded step by step on the printed page.
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Fig. S1. Example plots of the relation between the
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Fig. S2. Localization task responses on a smaller and
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